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Abstract—We investigate the construction of weakly-secure
index codes for a sender to send messages to multiple receivers
with side information in the presence of an eavesdropper. We
derive a sufficient and necessary condition for the existence of
index codes that are secure against an eavesdropper with access
to any subset of messages of cardinality t, for any fixed t. In
contrast to the benefits of using random keys in secure network
coding, we prove that random keys do not promote security in
three classes of index-coding instances.

I. INTRODUCTION

In classical1 index-coding problems, a sender sends multiple
messages to multiple receivers through a common noiseless
broadcast medium, where each receiver has a priori knowledge
of a subset of messages [1]–[5]. The subsets that each receiver
wants and knows can vary with the receiver. In this work, we
consider secure index coding, where in addition to the classical
setup, there is an eavesdropper who has access to a subset
of messages from a collection of subsets of messages. The
sender and the receivers know a priori the collection of message
subsets, however, they do not know which subset of messages
in this collection is actually accessed by the eavesdropper. A
weakly-secure index code must satisfy all receivers’ decoding
requirements, while ensuring that the eavesdropper is not able
to decode any message it has no access to.

A. Contributions of this paper and related work

The contributions of this work are three-fold:
1) Existence of secure index codes: Secure index coding

was first studied by Dau, Skachek, and Chee [6]. The authors
derived conditions that any given linear code (of a given
message alphabet size) must satisfy to simultaneously meet the
receivers’ decoding requirements as well as be secure against
an eavesdropper with access to a message subset.

In contrast to the code-centric results by Dau et al., we obtain
problem-centric results. We derive a sufficient and necessary
condition for the existence of both linear and non-linear
weakly-secure index codes over all finite-field alphabets for
any index-coding problem where the eavesdropper can access
any message subset of cardinality t. We show how to construct
such codes if they exist, and investigate their optimality.

2) Random keys: It has been shown [9] that there exist
randomised secure network codes (using random keys) for
instances where no deterministic secure network code exists.
Owing to an equivalence between classical versions of network

This work is supported by ARC grants FT140100219, DE140100420, and
DP150100903, and US NSF grants CNS-1526547 and CCF-1439465.

1We use the term classical to indicate the absence of any security constraints.

and index coding [7, 8], it is plausible that there exist index-
coding instances where randomised encoding can enable
security when deterministic encoding cannot. While we do
not identify an instance where this is true, we have proven that
random keys are not useful for weakly-secure index codes in
the following three cases: (i) the eavesdropper has access to
any t messages, (ii) the sender’s encoding function is linear, or
(iii) the eavesdropper has access to only one message subset.

3) Secure vs classical index coding: We highlight a signifi-
cant difference between classical and secure index coding. In
classical index coding, messages not required at any receiver
are not useful and can be removed from the system. In weakly-
secure index coding, these messages may be used as keys.

II. PROBLEM DEFINITION AND NOTATION

Let m,n ∈ N. For each i ∈ [n] , {1, . . . , n}, define
two subsets Ki,Wi ⊆ [m]. A classical index-coding instance
(Ki,Wi)

n
i=1 consists of a single sender and n receivers. The

sender has m messages X = [X1 X2 · · ·Xm], where {Xi}mi=1

are independent and uniformly distributed over a finite field Fq

with q elements. For a subset of integers I = {i1, i2, . . . , i|I|}
where i1 < i2 < · · · < i|I|, let XI , [Xi1Xi2 · · ·Xi|I| ]. Each
receiver i ∈ [n] has a priori knowledge of XKi

, and needs to
decode XWi

. The sender encodes X and gives the codeword
to all receivers. The codeword must be chosen so that each
receiver i ∈ [n] is able to decode the messages XWi it wants
using the codeword and the messages XKi

it already knows.
Without loss of generality, we may assume that Wi \ Ki 6= ∅
for all i ∈ [n], since receivers wanting only messages they
already know can be expunged from the problem.

Let A ⊆ 2[m], where 2[m] is the set of all subsets of [m].
A secure index-coding instance ((Ki,Wi)

n
i=1,A) is a classical

index-coding instance (Ki,Wi)
n
i=1 in the added presence

of an eavesdropper who can access the sender’s codeword
and precisely one subset of messages XA, where A ∈ A.
The eavesdropper cannot simultaneously access messages
corresponding to the indices contained in more than one
member of A. The set A contains the possible subsets of
indices of compromised messages. While the sender and the
receivers are aware of A, they are oblivious to the exact subset
of indices the eavesdropper knows. In addition to meeting
the receivers’ decoding requirements, a weakly-secure index
codeword must ensure that the eavesdropper gains no additional
information about each individual message Xj , j ∈ [m] \ A,
given XA and the codeword. Formally, we have the following:

Definition 1 (Deterministic weakly-secure index code): Given
a secure index-coding instance ((Ki,Wi)

n
i=1,A), a determinis-



tic weakly-secure index code (fi, {gi}ni=1) of codelength ` ∈ N
consists of
• an encoding function for the sender, f : Fm

q → F`
q , to

encode X into C , f(X), and
• a decoding function for each receiver i ∈ [n], gi : F`

q ×
F |Ki|

q → F |Wi|
q , to decode XWi from C and XKi

such that
• decodability: gi(f(X),XKi

) = XWi
for each i ∈ [n]; and

• weak security: for all A ∈ A, an eavesdropper accessing XA
has no information about any single message in Ac , [m]\A,
i.e., H(Xi|f(X),XA) = H(Xi), for all i ∈ Ac. �

Remark 1: If A = {[m]}, we have a classical index-coding
instance without any security constraint. �

The notion of weak security considered here, also known as
1-block weakly secure in the literature [6, 10], does not preclude
the eavesdropper from gaining information about XAc despite
gaining no knowledge about any single message thereof. Other
notions of security have also been considered in the literature.
For example, Mojahedian, Aref, and Gohari [11] considered
strongly-secure index coding, where the eavesdropper has no
access to any message, and must not gain any information
about the messages X . Their approach involves the sender
encoding messages with keys that are pre-shared with the
receivers, but are unknown to the eavesdropper.

It may be possible for the sender to use random keys along
with the messages X during the encoding process to ensure
security against the eavesdropper. We therefore introduce the
following notion of random weakly-secure index codes that
generalise deterministic weakly-secure index codes.

Definition 2 (Random weakly-secure index code): Let Y be a
random variable taking values in a finite alphabet Y known only
to the the sender, and unknown to the receivers and the eaves-
dropper. A random weakly-secure index code (fi, {gi}ni=1)
of codelength ` ∈ N is identical to the deterministic index-
code setup with the only exception that the sender encodes
X into C , f(X, Y ) using the function f : Fm

q × Y 7→ F`
q .

The decoding operations, decodability conditions, and security
conditions are identical to those in Definition 1.

For the rest of this paper, unless otherwise stated, by secure
index codes, we mean weakly-secure index codes.

Definition 3 (Linear index code): A random index code is
linear if and only if the key Y = [Y1 Y2 · · ·Yk] for some k ∈ N,
where {Yi}ki=1 are independent and uniformly distributed over
Fq , and the encoding function

C , f(X,Y ) = XG+ Y G̃, (1)

for some matrices G and G̃ over Fq of sizes m× ` and k× `,
respectively. Similarly, a deterministic index code is linear if
and only if the encoding function f(X) = XG. �

We say that a secure index code exists for a secure index-
coding instance I = ((Ki,Wi)

n
i=1,A) if and only if there exists

a (deterministic or random) secure index code (f, (gi)
n
i=1) for

some q that meets all the conditions in Definition 1. If one
such code exists, we say that the code is secure against an
eavesdropper having access to any message subset in A. As

we will see later, a secure index code may or may not exist
depending on A. The optimal secure index codelength s(I)
for a secure index-coding instance I , for which secure index
codes exist, is defined as infimum of the codelengths of secure
index codes over all alphabet sizes.

III. FUNDAMENTAL PROPERTIES

We begin with the following counter-intuitive proposition:
Proposition 1: Let A′ ( A ( [m]. An index code secure

against an eavesdropper who knows XA may not be secure
against an eavesdropper who knows XA′ , and vice versa.

Proof: The following example proves this claim. Consider
four receivers, where Wi = {i}, for all i ∈ [4], K1 = {2},
K2 = {1}, K3 = {2, 4}, K4 = {2, 3}. Consider two eavesdrop-
pers: the first eavesdropper has access to A1 = {{3, 4}}; the
second eavesdropper has access to A2 = {{3}}. The index code
C1 , f1(X) = [X1+X2 X3+X4], where + denotes addition
of the finite field Fq, is secure against the first eavesdropper
(because H(Xi|C1, X3, X4) = H(Xi) for each i ∈ {1, 2})
but not the second eavesdropper (because it can decode X4).
The index code C2 , f2(X) = [X1 +X2 X2 +X3 +X4] is
secure against the second eavesdropper, but not the first.

Proposition 1 is in contrast to secure network coding [9],
where a network code that is strongly secure against an
eavesdropper who can access a subset of links, say L, is also
secure against an eavesdropper who can access any L′ ( L.

Proposition 2: No secure index code exists for any secure
index-coding instance ((Ki,Wi)

n
i=1,A) where there exists A ∈

A and i ∈ [n] such that Ki ⊆ A and Wi ∩ Ac 6= ∅.
Proof: Pick j ∈ Wi ∩ Ac. Let C = f(X, Y ) be the

codeword of a random index code that uses a key Y . Since
H(Xj |C,XA) ≤ H(Xj |C,XKi

) = 0, the eavesdropper is
able to decode Xj . Thus, the code cannot be secure.

IV. EXISTENCE OF SECURE INDEX CODES

Here, we present a necessary and sufficient condition for the
existence of secure index codes, and their construction. Further-
more, we derive optimal secure index codes for certain classes
of instances. We begin with a specific type of eavesdroppers.

Definition 4: For a given (Ki,Wi)
n
i=1, we say that an index

code is secure against an eavesdropper with t-level access, for
some t ∈ {0, 1, . . . ,m− 1}, if and only if it is a secure index
code for ((Ki,Wi)

n
i=1, {A ( [m] : |A| = t}). �

Lemma 1: Any (deterministic or random) index code secure
against an eavesdropper with t-level access is also secure
against an eavesdropper with t′-level access, for any t′ < t.

Proof: Consider an eavesdropper with t-level access who
has access to any member of A = {A ( [m] : |A| = t}. An
index code secure against this eavesdropper must satisfy

H(Xi|C,XA) = H(Xi), for all A ∈ A, i ∈ Ac. (2)

Consider an eavesdropper with an access level t′ < t who has
access to any member of A′ = {B ( [m] : |B| = t′}. Pick any
A′ ∈ A′ and any i ∈ [m] \ A′. As t′ < t ≤ m − 1, we can
always find a subset A ∈ A such that A′ ( A and i /∈ A. So,

H(Xi)
(a)
= H(Xi|C,XA)

(b)

≤ H(Xi|C,XA′)
(c)

≤ H(Xi),



where (a) follows from (2), and (b) and (c) follow since
conditioning cannot increase entropy. Since the choices of A′
and i are arbitrary, we must have H(Xi|C,XA′) = H(Xi),
for all A′ ∈ A′ and all i ∈ [m] \ A′. Thus, the index code is
also secure against an eavesdropper with t′-level access.

Remark 2: Lemma 1 generalises the result by Dau et al. [6,
Theorem 4.9] that pertains specifically to deterministic linear
index codes to any (random or deterministic, linear or non-
linear) index code. �

Remark 3: Although Proposition 1 states that an index code
secure against an eavesdropper with access to A = {A} may
not be secure against an eavesdropper with access to A = {A′}
where A′ ( A, any index code secure against an eavesdropper
with t-level access, i.e., A = {A ( [m] : |A| = t}, is also
secure against an eavesdropper with any access level t′ < t.�

A. Existence of secure index codes and their construction

We now present a necessary and sufficient condition for the
existence of secure index codes.

Theorem 1: Consider a secure index-coding instance
((Ki,Wi)

n
i=1,A) with A = {A ( [m] : |A| = t} for some

t < m, i.e., the eavesdropper has t-level access. Secure index
codes exist if and only if

t < Kmin , min
i∈[n]
|Ki|. (3)

Deterministic linear secure index codes exist if (3) is satisfied.
Proof: We first prove the converse. Suppose that t ≥ Kmin.

By definition, there exists a receiver, say i, with |Ki| = Kmin,
and Wi \Ki 6= ∅. Pick some j ∈ Wi \Ki, i.e., Ki ⊆ [m] \ {j}.
Since Kmin ≤ t ≤ m−1, we can always find some A ∈ A such
that Ki ⊆ A ⊆ [m] \ {j}. From Proposition 2, we conclude
that no secure index code exists.

Next, we prove the forward part. Consider a deterministic
linear index code of length ` = m−Kmin, formed by

C = XG =
∑
i∈[m]

Xigi, (4)

where G is an m× ` matrix over Fq , and gi ∈ F`
q is the i-th

row of G. Let G be the transpose of the generating matrix
of a maximum-distance-separable (MDS) code, which always
exists for a sufficiently large q. For any such code, it follows
that any ` rows of G are linearly independent over Fq .

(Decoding) Receiver i ∈ [n] forms

C −
∑
k∈Ki

Xkgk =
∑

j∈[m]\Ki

Xjgj . (5)

Since |[m] \ Ki| = m− |Ki| ≤ m−Kmin = `, it follows that
{gj : j ∈ [m] \ Ki} are linearly independent. So, by using
C and {Xk : k ∈ Ki}, receiver i can decode X [m]\Ki

, and
consequently the message(s) XWi

it wants, by solving (5).
(Security) Denote the Hamming distance between two

vectors a = [a1a2 · · · am] ∈ Fm
q and b = [b1b2 · · · bm] ∈ Fm

q

by d(a, b) , |{i ∈ [m] : ai 6= bi}|, the minimum distance of
a vector space S by d(S) = min{a,b∈S:a6=b} d(a, b), and the
vector space spanned by the rows and columns of a matrix M
by rowsp(M) and colsp(G), respectively. Dau et al. [6] showed

that the linear index code of the form (4) is secure against an
eavesdropper with an access level d(colsp(G))− 2. Note that
GT is the generator matrix of an MDS code (m, `, d) whose
codewords are vectors in rowsp(GT). The minimum distance
of this MDS code equals d = d(rowsp(GT)) = d(colsp(G)) =
m− `+ 1. Invoking Lemma 1, we see that the index code (4)
is secure against an eavesdropper with an access level up to
and including (m− `+ 1)− 2 = Kmin − 1.

Some remarks are now in order.
Remark 4: MDS codes are also used in the partial-clique-

cover coding scheme [1] and its time-shared version [4], and
the local-chromatic-number coding scheme [12] for unicast
index coding, where Wi = {i} for all receivers i ∈ [n]. �

Remark 5: Receiver cooperation can increase the security
level. Allowing two receivers, say i and j, to cooperate and
share their messages is equivalent to solving a new secure index-
coding instance where everything remains the same except that
receivers i and j both know XKi∪Kj . Thus, cooperation can
potentially increase Kmin (see (3)), which then translates to
security against eavesdroppers with higher access levels. �

Remark 6: Theorem 1 also holds if we consider b-block
security (see Dau et al. [6]) for b ≥ 1 in Definition 1. In the
setting of b-block security, an eavesdropper who knows XA,
A ∈ A, gains no information about any b messages it does not
know, i.e., H(XB|C,XA) = H(XB), for all B ⊆ Ac with
|B| = b. In this case, the necessary and sufficient condition
for the existence of secure index codes in (3) is replaced by
t ≤ Kmin − b. �

Corollary 1.1: If Amax , maxA∈A |A| < Kmin, then
deterministic linear secure index codes exist.

Proof: Proof follows from Theorem 1 and Lemma 1.
Intuitively, Corollary 1.1 says that we can always find secure

index codes if the eavesdropper can access fewer messages
than each receiver can. However, unlike Theorem 1, we do
not have a converse for Corollary 1.1. This is because even if
an eavesdropper can access (numerically) more messages than
some receivers can, we may still be able to construct secure
index codes, depending on the sets of messages to which the
eavesdropper has access. For example, see the secure index
codes for the two instances with Amax ≥ Kmin in the proof of
Proposition 1.

B. Optimality of secure index codes

From the construction of secure index codes in Theorem 1,
we have the following:

Corollary 1.2: If Amax < Kmin, the optimal secure index
codelength is upper-bounded as s(I) ≤ m−Kmin. The upper
bound is achievable by deterministic linear index codes.

Proof: See the proof of Theorem 1.
We say that a receiver i has complementary message requests

if it wants all messages it does not know, i.e., Ki ∪Wi = [m].
Proposition 3: If Amax < Kmin, and if any receiver knowing

exactly Kmin messages has complementary message requests,
then the optimal codelength s(I) = m−Kmin, and is achievable
by deterministic secure linear index codes.



Proof: Without loss of generality, let |K1| = Kmin and
K1 ∪W1 = [m]. For any (deterministic or random) index code
C, we have H(XW1

|C,XK1
) = 0. Thus,

m log2 q = H(X) ≤ H(C,XK1 ,XW1) = H(C,XK1)

≤ log2 q
` + log2 q

Kmin ,

where we have made use of the facts that X = XK1∪W1 ,
H(XW1 |C,XK1) = 0, H(C) ≤ log2 |C| = log2 q

`, and
H(XK1

) = log2 q
Kmin . Therefore, ` ≥ m − Kmin. Since C

was arbitrary, it follows that s(I) = inf ` ≥ m −Kmin. The
proof is then complete by invoking Corollary 1.2.

V. SECURE VS CLASSICAL INDEX CODING

We can represent a secure index-coding instance
((Gi,Ki)

n
i=1,A) by a directed bipartite graph D = (U ,M, E),

similar to that by Neely, Tehrani, and Zhang [13]. Here, U and
M are independent vertex sets, where each arc (i.e., directed
edge) in E connects a vertex in U to a vertex in M. We
further partition U into two disjoint sets: R = {r1, r2, . . . , rn}
representing the n receivers, and V = {v1, v2, . . . , v|A|}
representing the possible sets of messages to which the
eavesdropper can access. The set M = [m] represents the
message indices. The arc set E is defined as follows:
• There is an arc from ri ∈ R to j ∈ M if and only if

receiver i knows the message Xj , i.e., j ∈ Ki.
• There is an arc from j ∈ M to ri ∈ R if and only if

receiver i wants the message Xj , i.e., j ∈ Wi.
• For each A ∈ A, we have a unique vi ∈ V such that
N+
D (vi) = A, where N+

D (vi) , {j ∈ M : (vi → j) ∈
E} is the out-neighbourhood of vi.

For a given secure index-coding instance D, if we ignore
the security constraint, the subgraph D[R ∪M] induced by
(R,M) is in fact the bipartite graph used by Neely et al. [13]
to represent the classical index-coding instance.

Proposition 4: Consider a secure index-coding instance
((Gi,Ki)

n
i=1,A), where A 6= {[m]}. Let D = ((R,V),M, E)

be its directed bipartite graph representation. If
(C1) D[R∪M] is acyclic, or equivalently, D is acyclic, and
(C2) every message is wanted by some receiver, i.e., for each

i ∈ [m], we have i ∈ Wj for some j ∈ [n],
then no secure index code exists.

Proof: For the classical index-coding instance D[R∪M],
Neely et al. [13, Appendix A] have shown that if condition
C1 is true (condition C2 is always assumed to be true for
non-secure index coding), one can obtain all messages from
any index code, even without using side information. Since
any secure index code for D, denoted by C, is an index code
for D[R∪M], we have H(X [m]|C) = 0. Therefore, for any
A ( [m] and any i ∈ [m] \ A, we have H(Xi|C,XA) ≤
H(X [m]|C) = 0 < H(Xi). Since A 6= {[m]}, there exists
some A ( [m]. It follows that no index code can be secure.

Condition C2 in Proposition 4 that every message is wanted
by some receiver is implicit in classical index coding as
removing messages not wanted by any receiver will change
neither the index code nor the optimal index codelength.

However, removing unwanted messages may affect secure
index coding, because these messages can be used as keys to
protect the index code against the eavesdropper. The following
example illustrates this idea.

Example 1: Consider the following secure index-coding
instance depicted by its directed bipartite graph representation.

1

v1

2

r1

The message X2 is not wanted by any receiver. If we remove
it from the setup, by invoking Proposition 4, we conclude that
there is no secure index code. However, keeping X2 in the
system, by invoking Corollary 1.1, we conclude that secure
index codes exist. Indeed, the index code C = X1 + X2 is
secure. Here, X2 acts as a key between the sender and receiver 1
to protect message X1 against the eavesdropper.

VI. RANDOM KEYS FOR SECURE INDEX CODING

We saw in Example 1 that using unwanted messages as
keys may be essential in ensuring security. One wonders if
generating random keys unknown to the receivers and the
eavesdropper can also help in secure index coding. While the
answer to this question is not known in general, we show that
in the following three scenarios, random keys are not useful
in the sense that random secure index codes exist if and only
if deterministic secure index codes also exist.

A. Eavesdroppers with t-level access

From Theorem 1, it follows that using random keys does not
provide greater security against an eavesdropper with t-level
access, i.e., when A = {A ( [m] : |A| = t}, for any t < m.

B. Linear index codes

We now restrict the secure index codes to be linear, while
A is arbitrary.

Theorem 2: Given any secure index-coding instance I .
Random secure linear index codes of codelength ` exist for
I if and only if deterministic secure linear index codes of
codelength ` also exist for I .

Proof: We only need to prove the only if direction of
the claim. Any random linear index code can be expressed as
C = XG + Y G̃. Since each receiver recovers its intended
messages, for each receiver i ∈ [n] and each j ∈ Wi, there
exist an `× 1 vector Di,j and a |Ki| × 1 vector Ei,j such that

Xj = CDi,j +XKiEi,j . (7)

Let V be defined as the nullspace of G̃, i.e.,

V = Null(G̃) , {A ∈ F`
q : G̃A = 0}. (8)

Note that V is a vector space. From (7), it follows that Di,j ∈ V
for any i ∈ [n] and j ∈ Wi, since

Xj −XKi
Ei,j = CDi,j = XGDi,j + Y G̃Di,j , (9)

which can hold only if G̃Di,j = 0 for any i ∈ [n] and j ∈ Wi.
Now, let A1, . . . ,Aˆ̀ be a basis for V. Note that l̂ ≤ l, since

V ⊆ F`
q . If the sender broadcasts Ĉ , [Ĉ1 Ĉ2 · · · Ĉˆ̀], where

Ĉi = CAi = XGAi, i ∈ [ˆ̀], then each receiver will still be



able to recover its intended messages, since for any i ∈ [m]
and j ∈ Wi, Xj −XKiEi,j = ĈDi,j is a linear combination
of Ĉ1, . . . , Ĉˆ̀. Furthermore, for any A ∈ A and any j ∈ Ac,

H(Xj) ≥ H(Xj |XA, Ĉ) ≥ H(Xj |XA,C) = H(Xj), (10)

where the second inequality follows since Ĉ is a function of
C. Hence, the new code Ĉ is also secure. The proof is then
complete by noting that Ĉ is a deterministic index code.

Remark 7: Random keys have also been shown not to be
useful for linear secure index codes in the strong-security
setting considered by Mojahedian et al. [11].

C. Eavesdroppers having access to only one message subset

Lastly, we consider the class of secure index-coding instances
where the eavesdropper can access only one message subset.

Proposition 5: Given any index-coding instance I with
|A| = 1, random secure index codes exist for I if and only if
deterministic secure index codes also exist for I .

Proof: Note that we only need to consider index-coding
instances where for each receiver i ∈ [n], either
• (Type 1) Ki ∪Wi ⊆ A;
• (Type 2) Ki \ A 6= ∅ and Wi \ A 6= ∅; or
• (Type 3) Ki \ A 6= ∅ and Wi ⊆ A.

Otherwise, according to Proposition 2, no (deterministic or
random) secure index code exists. Let receivers 1, . . . , n′ be
of Type 2, for some 0 ≤ n′ ≤ n, and the rest, of Type 1 or 3.

Consider a related index-coding instance
I ′ = ((K′i,W ′i)n

′

i=1,A
′) with only |A|c messages XAc ,

n′ receivers that are of Type 2 in I , where A′ = {∅},
K′i = (Ki ∩ Ac) 6= ∅, and W ′i = (Wi ∩ Ac) 6= ∅, for all
i ∈ [n′]. By the definition of Type-2 receiver, |K′i| ≥ 1 for
all i ∈ [n′]. For I ′, as Amax = 0 and Kmin ≥ 1, by invoking
Corollary 1.1, we see that there exists a deterministic secure
index code, say, C ′ = f ′(XAc). This means that there
exists a function g′i(C

′,XK′
i
) = XW′

i
for each i ∈ [n′], and

H(Xi|C ′) = H(Xi) for each i ∈ Ac.
We now show that C = [XA C ′] is a secure index code for

I . For any receiver of Type 1 or 3, its decoding requirement is
fulfilled from observing XA, because Wi ⊆ A. Any receiver i
of Type 2 gets XWi∩A from XA, and XWi∩Ac = XW′

i
from

g′i(C
′,XK′

i
), since it knows XKi ⊇XK′

i
.

Finally, H(Xi|C,XA) = H(Xi|C ′,XA)
(a)
= H(Xi|C ′) =

H(Xi), for any i ∈ Ac, where (a) follows from the inde-
pendence of (Xi,C

′) and XA. Hence, C is a deterministic
secure index code for I . So, for any I with |A| = 1, either no
(deterministic or random) secure index codes exist, or we can
always find a deterministic secure index code.

D. Secure index vs network coding

We now discuss some issues in extending the equivalence2 [7,
8] between classical index and network coding to the secure
setting. Consider the following network-coding instance N
with a source s having two links e1 and e2 to a receiver d.

2The instances are equivalent in the sense that a code for one instance can
be translated to a code for the other, and vice versa.

s d

e1

e2

X1 ∈ Fq X1

The codewords conveyed on links e1 and e2 in any network
code can be written as Y1 = f1(X1) and Y2 = f2(X1),
respectively, and the decoding operation X1 = g(Y1, Y2).

An equivalent [8] index-coding instance I has three inde-
pendent messages X̂1, Ŷ1, Ŷ2, and four receivers, as follows:

Receiver 1 2 3 4
Has X̂1 X̂1 (Ŷ1, Ŷ2) X̂1

Wants Ŷ1 Ŷ2 X̂1 (Ŷ1, Ŷ2)

Since the codes for instances I and N can be translated to
one another [8], we can translate the above code for N to an
index code Ĉ = [Ŷ1 + f1(X̂1) Ŷ2 + f2(X̂1)] for I .

Next, consider a secure version of N , with an eavesdropper
who has access to any one link (e1 or e2) [9]. A secure network
code must strongly secure X1 against the eavesdropper. To
this end, we need random network codes, e.g., f1(X1) = K,
where K is a random key uniformly distributed on Fq and
independent of X1, and f2(X1) = X1 +K.

Unfortunately, the code translation breaks down here in the
presence of security constraints. In I , for receiver 1 to decode
Ŷ1 from Ĉ and the message X̂1 it knows, it additionally needs
to know the random key K = f1(X̂1) generated by the sender.

One difficulty in establishing an equivalence between secure
network coding and secure index coding is that random
keys used by the sender for encoding need not be available
to the receivers for decoding. Furthermore, it is also not
straightforward to translate (strong or weak) security constraints
for the eavesdropper in N to equivalent and meaningful (strong
or weak) security constraints in I , and vice versa.
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